CARBONYL COMPOUNDS: OXIDATION-REDUCTION REACTION
Introduction

- Several functional groups contain the carbonyl group
 - Carbonyl groups can be converted into alcohols by various reactions

- Structure of the Carbonyl Group
 - The carbonyl carbon is sp2 hybridized and is trigonal planar
 - All three atoms attached to the carbonyl group lie in one plane
Reactions of Carbonyl Compounds with Nucleophiles

- Carbonyl groups can undergo nucleophilic addition
 - The nucleophile adds to the δ^+ carbon
 - The π electrons shift to the oxygen
 - The carbon becomes sp^3 hybridized and therefore tetrahedral
 - Hydride ions and carbanions are two examples of nucleophiles that react with the carbonyl carbon

$$\text{Nu}^- + \text{C}==\text{O} \rightarrow \text{Nu}--\text{C}==\text{O}$$

- Carbonyl: oxidation
 - Alcohol: reduced

verted by

hydrdes can be

A primary alcohol
An aldehyde

Chapter 12
Oxidation-Reduction Reactions in Organic Chemistry

- **Reduction**: increasing the hydrogen content or decreasing the oxygen content of an organic molecule
 - A general symbol for reduction is \([\text{H}]\)

- **Oxidation**: increasing the oxygen content or decreasing the hydrogen content of an organic molecule
 - A general symbol for oxidation is \([\text{O}]\)
 - Oxidation can also be defined as a reaction that increases the content of any element more electronegative than carbon

![Chemical reaction diagrams showing reduction and oxidation processes]
Alcohols by Reduction of Carbonyl Compounds

- A variety of carbonyl compounds can be reduced to alcohols

- Carboxylic acids can be reduced to primary alcohols
 - These are difficult reductions and require the use of powerful reducing agents such as lithium aluminum hydride (LiAlH_4 also abbreviated LAH)

\[
4 \text{RCO}_2\text{H} + 3 \text{LiAlH}_4 \xrightarrow{\text{Et}_2\text{O}} [(\text{RCH}_2\text{O})_2\text{Al}]\text{Li} + 4 \text{H}_2 + 2 \text{LiAlO}_2
\]

- Example: Reduction of 2,2-Dimethylpropanoic acid to Neopentyl alcohol (92%)
 - (1) $\text{LiAlH}_4/\text{Et}_2\text{O}$
 - (2) $\text{H}_2\text{O}/\text{H}_2\text{SO}_4$
Aldehydes and ketones are reduced to 1º and 2º alcohols respectively

Aldehydes and ketones are reduced relatively easily; the mild reducing agent sodium borohydride (NaBH₄) is typically used

LAH and hydrogenation with a metal catalyst can also be used
- Esters are also reduced to primary alcohols
- LAH or high pressure hydrogenation can accomplish this transformation

\[
\text{RC} \equiv \text{OR}' + \text{H}_2 \xrightarrow{\text{CuO} \cdot \text{CuCl}_2 \text{O}_4/175^\circ\text{C}/5000 \text{ psi}} \text{RCH}_2\text{OH} + \text{R'}\text{OH}
\]
The key step in the reduction is reaction of hydride with the carbonyl carbon.

Carboxylic acids and esters are considerably less reactive to reduction than aldehydes and ketones and require the use of LAH.

Lithium aluminium hydride is very reactive with water and must be used in an anhydrous solvent such as ether.

Sodium borohydride is considerably less reactive and can be used in solvents such as water or an alcohol.
Oxidation of Alcohols

- Oxidation of Primary Alcohols to Aldehydes
 - A primary alcohol can be oxidized to an aldehyde or a carboxylic acid
 - The oxidation is difficult to stop at the aldehyde stage and usually proceeds to the carboxylic acid
- A reagent which stops the oxidation at the aldehyde stage is pyridinium chlorochromate (PCC)
 - PCC is made from chromium trioxide under acidic conditions
 - It is used in organic solvents such as methylene chloride (CH₄Cl₂)
Oxidation of Primary Alcohols to Carboxylic Acids

Potassium permanganate (KMnO_4) is a typical reagent used for oxidation of a primary alcohol to a carboxylic acid.

The reaction is generally carried out in aqueous solution; a brown precipitate of MnO$_2$ indicates that oxidation has taken place.

$$\text{R} \text{CH}_2\text{OH} + \text{KMnO}_4 \xrightarrow{\text{OH}^-} \text{RCO}_2\text{K}^+ + \text{MnO}_2$$

Heat $\xrightarrow{\text{H}_3\text{O}^+}$ RCO_2H
Oxidation of Secondary Alcohols to Ketones

- Oxidation of a secondary alcohol stops at the ketone
- Many oxidizing agents can be used, including chromic acid (H₂CrO₄) and Jones reagent (CrO₃ in acetone)
Mechanism of Chromate Oxidation

- **Step 1**: A chromate ester is formed from the alcohol hydroxyl.
- **Step 2**: An elimination reaction occurs by removal of a hydrogen atom from the alcohol carbon and departure of the chromium group with a pair of electrons.
Aldehydes form hydrates in water

An aldehyde hydrate can react to form a chromate ester which can subsequently undergo elimination to produce a carboxylic acid.
- Pyridinium chlorochromate reactions are run in anhydrous methylene chloride and the aldehyde cannot form a hydrate.
- The oxidation of a primary alcohol therefore stops at the aldehyde stage.
- Tertiary alcohols can form the chromate ester but cannot eliminate because they have no hydrogen on the alcohol carbon.
- Tertiary alcohols are therefore not oxidized by chromium based reagents.

\[
\text{3}^{\circ} \text{ Alcohol} + \text{O} - \text{Cr} - \text{O} - \text{H} + \text{H}^+ \rightleftharpoons \text{O} - \text{Cr} - \text{O} - \text{H} + \text{H}_2\text{O}
\]

This chromate ester cannot undergo elimination of H_2CrO_3.

[Chemical structures and reactions diagram]
Organometallic Compounds

Carbon-metal bonds vary widely in character from mostly covalent to mostly ionic depending on the metal.

- Primarily ionic (M = Na⁺ or K⁺)
- Primarily covalent (M = Pb, Sn, Hg, or Tl)

The greater the ionic character of the bond, the more reactive the compound.

- Organopotassium compounds react explosively with water and burst into flame when exposed to air.
Preparation of Organolithium and Organomagnesium Compounds

- Organolithium Compounds
 - Organolithium compounds can be prepared by reaction of an alkyl halide with lithium metal in an ether solvent
 - The order of reactivity of halides is $R-I > R-Br > R-Cl$ ($R-F$ is seldom used)

$$R-X + 2 \text{Li} \xrightarrow{\text{Et}_2\text{O}} R\text{Li} + \text{LiX}$$

(or $Ar-X$) (or $Ar\text{Li}$)

- Diethyl ether (Et_2O)
- Tetrahydrofuran (THF)
• **Grignard Reagents**

 - Grignard reagents are prepared by the reaction of organic halides with magnesium turnings.

 - An ether solvent is used because it forms a complex with the Grignard reagent which stabilizes it.

 \[RX + Mg \xrightarrow{Et_2O} R\text{MgX} \]

 \[ArX + Mg \xrightarrow{Et_2O} Ar\text{MgX} \]

\[
\begin{align*}
\text{CH}_3\text{I} + Mg & \xrightarrow{Et_2O, 35^\circ C} \text{CH}_3\text{MgI} \\
\text{C}_6\text{H}_5\text{Br} + Mg & \xrightarrow{Et_2O, 35^\circ C} \text{C}_6\text{H}_5\text{MgBr}
\end{align*}
\]

- Methylmagnesium iodide (95%)
- Phenylmagnesium bromide (95%)
Reactions of Organolithium and Organomagnesium Compounds

- Reactions with Compounds Containing Acidic Hydrogen Atoms
 - Organolithium and Grignard reagents behave as if they were carbanions and they are therefore very strong bases
 - They react readily with hydrogen atoms attached to oxygen, nitrogen or sulfur, in addition to other acidic hydrogens (water and alcohol solvents cannot be used)
Organolithium and Grignard reagents can be used to form alkyynes by acid-base reactions.

Alkynylmagnesium halides and alkynyllithium reagents are useful nucleophiles for C-C bond synthesis.
Reactions of Grignard Reagents with Oxiranes (Epoxides)

- Grignard reagents are very powerful nucleophiles and can react with the δ+ carbons of oxiranes.
 - The reaction results in ring opening and formation of an alcohol product.
 - Reaction occurs at the least-substituted ring carbon of the oxirane.
 - The net result is carbon-carbon bond formation two carbons away from the alcohol.

\[
\text{Oxirane} \quad \xrightarrow{\text{R: MgX, H₂C}} \quad R\text{-CH₂CH₂O⁻} \quad \xrightarrow{\text{H₂O⁺}} \quad R\text{-CH₂CH₂OH}
\]
Reaction of Grignard Reagents with Carbonyl Compounds

- Nucleophilic attack of Grignard reagents at carbonyl carbons is the most important reaction of Grignard reagents
 - Reaction of Grignard reagents with aldehydes and ketones yields a new carbon-carbon bond and an alcohol

\[R\text{MgX} + C=O \xrightarrow{\text{Step 1}} R-C-O-H + MgX_2 \]

Step 1

The strongly nucleophilic Grignard reagent uses its electron pair to form a bond to the carbon atom. One electron pair of the carbonyl group shifts out to the oxygen. This reaction is a nucleophilic addition to the carbonyl group, and it results in the formation of an alkoxide ion associated with Mg\(^{2+}\) and X\(^{-}\).

\[\text{Step 2} \quad R-C-O^- + Mg^{2+}X^- + H^+ \xrightarrow{\text{Step 2}} R-C-O-H + MgX_2 \]

Step 2

In the second step, the addition of aqueous HX causes protonation of the alkoxide ion; this leads to the formation of the alcohol and MgX\(_2\).
Alcohols from Grignard Reagents

Aldehydes and ketones react with Grignard reagents to yield different classes of alcohols depending on the starting carbonyl compound.
Esters react with two molar equivalents of a Grignard reagent to yield a tertiary alcohol.

A ketone is formed by the first molar equivalent of Grignard reagent and this immediately reacts with a second equivalent to produce the alcohol.

[Diagram showing the reaction process]

Chapter 12
Grignard Reaction with Formaldehyde

\[\text{Phenylmagnesium bromide} + \text{Formaldehyde} \rightarrow \text{Et}_2\text{O} \rightarrow \text{C}_6\text{H}_5\text{CH}_2\text{OMgBr} \rightarrow \text{H}_2\text{O}^+ \rightarrow \text{C}_6\text{H}_5\text{CH}_2\text{OH} \]

Benzyl alcohol (90%)

Grignard Reaction with a Higher Aldehyde

\[\text{Ethylmagnesium bromide} + \text{Acetaldehyde} \rightarrow \text{Et}_2\text{O} \rightarrow \text{CH}_3\text{CH}_2\text{C}\text{OMgBr} \rightarrow \text{H}_2\text{O}^+ \rightarrow \text{CH}_3\text{CH}_2\text{CHCH}_3 \]

2-Butanol (80%)

Grignard Reaction with a Ketone

\[\text{Butylmagnesium bromide} + \text{Acetone} \rightarrow \text{Et}_2\text{O} \rightarrow \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{C}\text{OMgBr} \rightarrow \text{NH}_4\text{Cl} \rightarrow \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{C}\text{CH}_3 \]

2-Methyl-2-hexanol (92%)

Grignard Reaction with an Ester

\[\text{Ethylmagnesium bromide} + \text{Ethyl acetate} \rightarrow \text{Et}_2\text{O} \rightarrow \left[\text{CH}_3\text{CH}_2\text{C}\text{OMgBr} \right] \rightarrow \text{C}_6\text{H}_5\text{OMgBr} \rightarrow \text{CH}_3\text{CH}_2\text{CCH}_2\text{CH}_3 \]

3-Methyl-3-pentanol (67%)
Planning a Grignard Synthesis

- Example: Synthesis of 3-phenyl-3-pentanol
 - The starting material may be a ketone or an ester
 - There are two routes that start with ketones (one is shown)
Solved Problem: Synthesize the following compound using an alcohol of not more than 4 carbons as the only organic starting material.
Restrictions on the Use of Grignard Reagents

- Grignard reagents are very powerful nucleophiles and bases
 - They react as if they were carbanions
- Grignard reagents cannot be made from halides which contain acidic groups or electrophilic sites elsewhere in the molecule

\[
\begin{align*}
-\text{OH}, -\text{NH}_2, -\text{NHR}, -\text{CO}_2\text{H}, -\text{SO}_3\text{H}, -\text{SH}, -\text{C}=\text{C}=\text{H} \\
-\text{CH}, -\text{CR}, -\text{COR}, -\text{CNH}_2, -\text{NO}_2, -\text{C}=\text{N}, -\text{C}=\text{C} \\
\end{align*}
\]

Grignard reagents containing these groups cannot be prepared.

- The substrate for reaction with the Grignard reagent cannot contain any acidic hydrogen atoms
 - The acidic hydrogens will react first and will quench the Grignard reagent
 - Two equivalents of Grignard reagent could be used, so that the first equivalent is consumed by the acid-base reaction while the second equivalent accomplishes carbon-carbon bond formation.
- The Use of Lithium Reagents
 - Organolithium reagents react similarly to Grignard reagents
 - Organolithium reagents tend to be more reactive

\[
\begin{align*}
\text{Organolithium reagent} & \quad \text{Aldehyde or ketone} & \quad \text{Lithium alkoxide} & \quad \text{Alcohol} \\
\end{align*}
\]

- The Use of Sodium Alkynides
 - Sodium alkynides react with carbonyl compounds such as aldehydes and ketones to form new carbon-carbon bonds

\[
\begin{align*}
\text{CH}_3\text{C}≡\text{CH} & \xrightarrow{\text{NaNH}_2} \text{CH}_3\text{C}≡\text{CNa} \\
\end{align*}
\]
Solved Problem

- Synthesize the following compounds using reagents of 6 carbons or less

\[
\begin{align*}
(a) & \quad \text{OH} \quad \text{CH}_2\text{CH}_3 \\
(b) & \quad \text{OH} \quad \text{CH}_3 - \text{C} - \text{C}_6\text{H}_5 \\
(c) & \quad \text{OH} \quad \text{C} = \text{C} \quad \text{CH} \\
\end{align*}
\]

\[
\text{OH} \quad \text{CH}_2\text{CH}_3 \quad \rightarrow \quad \text{OH} \quad \text{CH}_2\text{CH}_3 + \text{BrMg} - \text{CH}_2\text{CH}_3 \quad \rightarrow \quad \text{Br} - \text{CH}_2\text{CH}_3 \quad \rightarrow \quad \text{OH} - \text{CH}_2\text{CH}_3
\]

\[
\text{CH}_3\text{CH}_2\text{OH} \quad \xrightarrow{\text{PBr}_3} \quad \text{CH}_3\text{CH}_2\text{Br} \quad \xrightarrow{\text{Mg, Et}_2\text{O}} \quad \text{CH}_3\text{CH}_2\text{MgBr} \quad \xrightarrow{(1) \text{NH}_4\text{Cl, H}_2\text{O}, (2)} \quad \text{OH} \quad \text{CH}_2\text{CH}_3
\]

Chapter 12

- This is an alternative formation of carbon-carbon bonds which, in effect, couples two alkyl halides

\[
\text{R—X + R'—X} \xrightarrow{\text{several steps}} \text{R—R'}
\]

- One of the halides is converted to a lithium dialkylcuprate by a two step sequence
- Treatment of the lithium dialkylcuprate with the other halide results in coupling of the two organic groups

These are the organic starting materials. The R— and R’— groups need not be different.
\[
\begin{align*}
\text{CH}_3\text{I} & \xrightarrow{\text{Li, Et}_2\text{O}} \text{CH}_3\text{Li} \quad \text{Cul} \\
& \rightarrow (\text{CH}_3)_2\text{CuLi} \quad \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{I} \\
& \rightarrow \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_3 \\
\text{Hexane} & \quad (98\%) \\
\text{Cyclohexyl} & \xrightarrow{(\text{CH}_3)_2\text{CuLi, Et}_2\text{O}} \text{CyclohexylCH}_3 \\
& \quad \text{CH}_3\text{Cu} + \text{LiI} \\
\text{Methylcyclohexane} & \quad (75\%)
\end{align*}
\]